MySQL常见的存储引擎InnoDB、MyISAM有何区别?
MySQL常见的存储引擎InnoDB、MyISAM有何区别?大家好,我是阿秀。我来更新了,本期是 MySQL 第二期,至此 MySQL 部分就全部更新完毕了,下一弹就是 Redis
大家好,我是阿秀。
我来更新了,本期是 MySQL 第二期,至此 MySQL 部分就全部更新完毕了,下一弹就是 Redis 篇了。
上一篇文章中,小伙伴建议将资料按照更细粒度去整理一番,我觉得是非常不错的建议。目前正在整理中,等全部整理完毕就会更新第四版的 PDF 版本了,第三版的 PDF 直接回复关键字 「PDF」 就可以下载了。
话不多说,那我们就开始本期内容吧。
26、数据库三大范式精讲第一范式
在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。所谓第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。
如果出现重复的属性,就可能需要定义一个新的实体,新的实体由重复的属性构成,新实体与原实体之间为一对多关系。在第一范式(1NF)中表的每一行只包含一个实例的信息。
简而言之,第一范式就是无重复的列。
第二范式
第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或行必须可以被惟一地区分。
为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。这个惟一属性列被称为主关键字或主键、主码。第二范式(2NF)要求实体的属性完全依赖于主关键字。
所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。
简而言之,第二范式就是非主属性非部分依赖于主关键字。
第三范式
满足第三范式(3NF)必须先满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。
例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。
简而言之,第三范式就是属性不依赖于其它非主属性。
27、数据库三大范式精要总结
(1)简单归纳:
第一范式(1NF):字段不可分;
第二范式(2NF):有主键,非主键字段依赖主键;
第三范式(3NF):非主键字段不能相互依赖。
(2)解释:
1NF:原子性。字段不可再分,否则就不是关系数据库;;
2NF:唯一性 。一个表只说明一个事物;
3NF:每列都与主键有直接关系,不存在传递依赖。
28、MySQL常见的存储引擎InnoDB、MyISAM的区别?适用场景分别是?
1)事务:MyISAM不支持,InnoDB支持
2)锁级别:MyISAM 表级锁,InnoDB 行级锁及外键约束
3)MyISAM存储表的总行数;InnoDB不存储总行数;
4)MyISAM采用非聚集索引,B+树叶子存储指向数据文件的指针。InnoDB主键索引采用聚集索引,B+树叶子存储数据
适用场景:
MyISAM适合:插入不频繁,查询非常频繁,如果执行大量的SELECT,MyISAM是更好的选择, 没有事务。
InnoDB适合:可靠性要求比较高,或者要求事务;表更新和查询都相当的频繁, 大量的INSERT或UPDATE
29、事务四大特性(ACID)原子性、一致性、隔离性、持久性?
第一种回答
原子性:一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。。事务在执行过程中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。一致性:在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设规则,这包含资料的精确度、串联性以及后续数据库可以自发性地完成预定的工作。隔离性:数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。持久性:事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。
第二种回答
原子性(Atomicity)
原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则不能对数据库有任何影响。
一致性(Consistency)
事务开始前和结束后,数据库的完整性约束没有被破坏。比如A向B转账,不可能A扣了钱,B却没收到。
隔离性(Isolation)
隔离性是当多个用户并发访问数据库时,比如操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。
同一时间,只允许一个事务请求同一数据,不同的事务之间彼此没有任何干扰。比如A正在从一张银行卡中取钱,在A取钱的过程结束前,B不能向这张卡转账。关于事务的隔离性数据库提供了多种隔离级别,稍后会介绍到。?
持久性(Durability)
持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数据库系统遇到故障的情况下也不会丢失提交事务的操作。
30、SQL中的NOW()和CURRENT_DATE()两个函数有什么区别?
NOW()命令用于显示当前年份,月份,日期,小时,分钟和秒。CURRENT_DATE()仅显示当前年份,月份和日期。
31、什么是聚合索引 ?
聚簇索引就是按照拼音查询,非聚簇索引就是按照偏旁等来进行查询。
其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查"安"字,就会很自然地翻开字典的前几页,因为"安"的拼音是"an",而按照拼音排序 汉字的字典是以英文字母"a"开头并以"z"结尾的,那么"安"字就自然地排在字典的前部。如果您翻完了所有以"a"开头的部分仍然找不到这个字,那么就 说明您的字典中没有这个字;同样的,如果查"张"字,那您也会将您的字典翻到最后部分,因为"张"的拼音是"zhang"。也就是说,字典的正文部分本身 就是一个目录,您不需要再去查其他目录来找到您需要找的内容。
我们把这种正文内容本身就是一种按照一定规则排列的目录称为"聚集索引"
32、什么是非聚合索引?
如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而 需要去根据"偏旁部首"查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。
但您结合"部首目录"和"检字表"而查到的字的排序并不是 真正的正文的排序方法,比如您查"张"字,我们可以看到在查部首之后的检字表中"张"的页码是672页,检字表中"张"的上面是"驰"字,但页码却是63 页,"张"的下面是"弩"字,页面是390页。
很显然,这些字并不是真正的分别位于"张"字的上下方,现在您看到的连续的"驰、张、弩"三字实际上就是他 们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。
我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后 再翻到您所需要的页码。
我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为"非聚集索引"。
33、聚集索引与非聚集索引的区别是什么?
非聚集索引和聚集索引的区别在于, 通过聚集索引可以查到需要查找的数据, 而通过非聚集索引可以查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据。聚集索引和非聚集索引的根本区别是表记录的排列顺序和与索引的排列顺序是否一致。
聚集索引(Innodb)的叶节点就是数据节点,而非聚集索引(MyisAM)的叶节点仍然是索引节点,只不过其包含一个指向对应数据块的指针。
3 首页 下一页 上一页 尾页-
数据时代来了,企业存储下一步怎么走?2021-04-27
-
特斯拉被要求提供事故前半小时行车数据: 360行车记录仪K980十分必要2021-04-25
-
操作系统厂商是数据流动规则的主导者?2021-04-25
-
大数据时代,西部数据的应对之道:创新存储架构2021-04-23
-
太美医疗科技发布自动化临床数据解决方案,破解临床研究数据痛点2021-04-23
-
“机器质检+数据分析”能为企业降本增效吗?2021-04-23
-
AI技术+实体产业:一场数据价值下的生产力革命2021-04-23
-
汇量科技EnginePlus 2.0全面升级:打造大数据、人工智能、云原生一体的一站式平台2021-04-21
-
dTrialForum圆满落幕!太美医疗科技自动化临床数据解决方案即将发布2021-04-21
-
西部数据创新存储架构 助力IPFS突破算力瓶颈2021-04-21
-
隐私计算,能否破局“数据孤岛”?2021-04-21
-
探索隐私计算的江湖:数据金矿的守护者与吹哨人2021-04-21
-
面向数字化时代 西部数据打造创新存储架构2021-04-20
-
未来不足1.5%的数据被存储!IPFS存储架构应用正在爆发2021-04-19
-
西部数据副总裁兼中国区业务总经理刘钢:创新存储架构 突破IPFS算力瓶颈 西部数据的这些技术探索2021-04-19